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ABSTRACT 

The identification of disordered gambling in the online environment may enable interventions to 

be targeted to those users experiencing harms. We tested the performance of machine learning in 

classifying online gamblers with and without a record of voluntary self-exclusion (VSE). We 

analyzed a one year dataset from PlayNow.com, the provincially-owned online gambling 

platform in British Columbia, Canada. The primary model compared 2,157 gamblers with a 

record of VSE enrollment (6 months to 3 years) against 17,526 non-VSE controls, using 20 input 

variables of gambling behaviour. Machine learning (random forest classifier) achieved an Area 

Under the Receiver Operating Characteristic curve (AUROC) of 0.75 (SD = 0.01). The input 

variable with the greatest predictive signal (based on feature importance values) was Variance in 

Money Bet per Session. Further analyses tested a logistic regression model as a benchmark, and 

tested the impact of key modelling decisions (including use of a balanced dataset, and data 

inclusion threshold). Across all models, machine learning was able to predict VSE status with 

performance between 0.65 – 0.76, using our behavioural inputs. These results provide proof-of-

principle data for the applied use of behavioural tracking to identify disordered gambling, and 

highlight the importance of behavioural inputs reflecting betting variability.  

 

Keywords: online gambling, slot machines, gambling disorder, data science, machine learning, 

loss chasing 
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INTRODUCTION 

Over the past two decades, online gambling has become a major part of the gambling landscape. 

Individuals who gamble online typically display elevated levels of disordered gambling 

(Edgerton, Biegun, & Roberts, 2016; Gainsbury, 2015). Some studies have indicated that this 

increase is driven by online gamblers engaging in a wider range of gambling forms, including 

land-based gambling (LaPlante, Nelson, & Gray, 2014; Philander & MacKay, 2014). However, 

in a recent study, both online-only and mixed-mode (i.e. online and land-based) gamblers 

displayed higher rates of problem gambling and a range of specific gambling harms, compared to 

a control group of land-based gamblers (Papineau et al., 2018). The longstanding concerns 

regarding the risk profile of online gambling arise from a multitude of factors including high 

availability (especially on mobile devices), card-based payment, and the increased potential to 

combine gambling with drug or alcohol use (Cotte & Latour, 2009). At the same time, online 

gambling operators automatically receive large volumes of customer data that is registered 

against single user accounts. This enables behaviour to be monitored across time (termed 

‘behavioural tracking’) and creates an opportunity for online gambling operators to identify and 

respond to users displaying signs of disordered gambling (Deng, Lesch, & Clark, 2019; Edgerton 

et al., 2016; Griffiths, 2012). Advances in data science and the application of these techniques to 

psychology and psychiatry are ideally suited to this objective (Deng et al., 2019), and regulators 

are increasingly considering mandatory requirements for data analytics as a means of reducing 

gambling harm. Some concerns have been raised about the transparency of predictive techniques 

that rely on complex, multivariate ‘black box’ algorithms (Coussement & De Bock, 2013). 

 

Identifying Disordered Gambling from Behavioural Tracking Data 
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Prior research on behavioural tracking of online gambling data has relied on a small number of 

datasets, chiefly from European websites. A series of studies by the Harvard Division of 

Addictions have used data from bwin.party, a European website that specializes in sports betting 

but also offers online casino games. One bwin dataset comprises users who opened accounts on 

bwin in February 2005 (n = 48,114) and were followed over a 2 year period (Labrie, Kaplan, 

Laplante, Nelson, & Shaffer, 2008; Nelson et al., 2008; Shaffer, Peller, LaPlante, Nelson, & 

LaBrie, 2010; Xuan & Shaffer, 2009). A key challenge in working with online gambling data is 

the verification of which users actually have gambling problems. Although some studies have 

approached this directly by hosting a problem gambling screening instrument on the gambling 

platform (Excell et al., 2014; LaPlante et al., 2014; Tom, LaPlante, & Shaffer, 2014), response 

rates tend to be low. For example, only 2% of 100,000 subscribers to bwin voluntarily completed 

the Brief Biosocial Gambling Screen in Tom, et al. (2014), raising concerns about the 

representativeness of an algorithm built on such individuals. An alternative marker is account 

closure, where it may be further possible to compare users based on stated reasons for account 

closure (e.g. gambling problems versus dissatisfaction with the platform) (Braverman & Shaffer, 

2012; Luquiens et al., 2018; Philander, 2014). Other possible ‘red flags’ include complaints to 

the website or requests to increase spending limits (Braverman, LaPlante, Nelson, & Shaffer, 

2013; Gray, LaPlante, & Shaffer, 2012).  

 

The present report uses voluntary self-exclusion (VSE) as an indicator of gambling harm. VSE 

programs enable gamblers to ban themselves from a gambling facility or operator for a set period 

of time (in the British Columbia program, the gambler selects a period between 6 months and 3 

years duration). Past research indicates that the majority of gamblers enrolled in VSE programs 
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meet criteria for problem gambling (Ladouceur, Jacques, Giroux, Ferland, & Leblond, 2000; 

Motka et al., 2018), supporting the validity of VSE status as an indicator of disordered gambling 

for use in predictive modelling. For example, in an evaluation of 269 gamblers enrolled in the 

self-exclusion program in British Columbia, 74% scored in the problem gambling category on 

the Problem Gambling Severity Index (McCormick, Cohen, & Davies, 2018). Although research 

on online VSE is more limited, of 259 VSE gamblers on a European website, 76% met criteria 

for problem gambling (Hayer & Meyer, 2011). Nevertheless, these figures serve to highlight that 

a proportion of VSE enrollees do not evidence problem gambling on screening questionnaires. In 

addition, only a small minority of problem gamblers appear to enroll in VSE programs, for 

example compared to the prevalence of gambling problems among casino patrons (Dragicevic, 

Percy, Kudic, & Parke, 2015). Implementation of predictive modelling by gambling operators 

will likely require convergent evidence across multiple indicators of gambling harm. 

 

Behavioural Predictors and Machine Learning 

Online gambling datasets often contain millions of individual bets. In extracting quantitative 

behavioural markers for each user, bets are usually aggregated by day (e.g. number of active 

betting days) and/or by session (e.g. average bets per session). Sessions are usually defined as 

periods of uninterrupted play, where each bet follows the previous bet within a predefined period 

of time, e.g. 30 minutes. Early bwin studies established that disordered gambling is associated 

with higher gambling frequency (e.g. active betting days) and gambling intensity (e.g. average 

bet size) (Labrie & Shaffer, 2011; Nelson et al., 2008). Measures of variability are also identified 

as an important predictor; for example, high-risk users tend to vary their bet size more (i.e. the 

standard deviation of the wager size) (Braverman et al., 2013; Braverman & Shaffer, 2012). A 
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distinct form of variability (sometimes termed breadth or diversity) is the number of gambling 

products that the user engages with (Adami et al., 2013; LaPlante et al., 2014). Some studies 

have also sought to characterize gambling trajectories; for example, increasing bet size and 

increasing losses were observed in the days leading up to account closure (Xuan & Shaffer, 

2009).  

 

Several studies have entered multiple behavioural predictors in multivariate models (Braverman 

et al., 2013; Gray et al., 2012; Luquiens et al., 2018). In a bwin analysis of 2,042 individuals with 

various problem gambling indicators (and 2,014 controls), Gray et al. (2012) applied 

discriminant function analysis on 27 input variables. They found that non-monetary variables 

reflecting frequency and intensity (active betting days, bets per day) best distinguished the cases 

with a variety of ‘red flags’ for problem gambling (including requests for account closure, 

account re-opening, or changes to deposit limits), particularly on variables pertaining to live 

action sports. In a distinct European dataset from the operator GTECH, users who later self-

excluded from the program displayed higher gambling losses and greater variability in losses, but 

did not differ on bets per day or the number of different games played (Dragicevic et al., 2015). 

Thus, it remains unclear which behavioural variables are robustly associated with markers of 

problem gambling, and additional online gambling datasets are needed to establish 

generalizability.   

 

Machine learning techniques can be used for building predictive models, and have garnered 

much interest in psychology and psychiatry (e.g. Ahn and Vassileva, 2016; Chekroud et al., 

2016). In cases where the outcome for each participant is known prior to analysis, the modelling 
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process is termed ‘supervised learning’: the algorithm is presented with input data along with the 

outcome categorization, and then ‘learns’ which patterns in the input data are associated with the 

outcomes. This is formulated as a set of mathematical rules (e.g. in the form of decision trees), 

which can in turn be used for predicting outcomes in new input data (see Dwyer et al., 2018 for 

review). Advantages of machine learning methods over linear models such as logistic regression 

is that machine learning algorithms are designed for complex multivariate data and include 

interactions by default, rely on fewer assumptions regarding the data (e.g. normality, linear 

relationships), and have built-in procedures (i.e. cross-validation) to increase generalizability 

(Dwyer et al., 2018; Gowin et al., 2019).  

 

Previous studies testing such procedures in online gambling datasets have found mixed success. 

Using a publicly available bwin dataset, Philander (2014) trained the model on the comparison of 

176 account closers who cited gambling problems and 354 account closures who gave other 

reasons. The input variables comprised the behavioural markers of frequency, intensity, 

variability, and trajectory from Braverman & Shaffer (2010), plus some demographic variables. 

Philander trained the model on 70% of the dataset and tested the resulting algorithm on the 

remaining 30%. Area Under the Receiver Operating Characteristic curve (AUROC) values were 

reported as a performance metric. The Receiver Operating Characteristic (ROC) curve plots the 

true positive rate (sensitivity) against the false positive rate (i.e. 1 - specificity), across all 

possible discrimination thresholds. An AUROC of 1 indicates perfect prediction, while a random 

classifier would obtain an AUROC of 0.5. In the Philander study, across 9 different algorithms 

that included a random forest classifier, AUROC values varied from 0.50 - 0.55, offering only a 

modest benefit over chance. It is possible that this poor performance stemmed from using 
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controls who were also account closers. A recent study of online poker players found that the 

stated reason for self-exclusion (gambling problems vs commercial reasons) yielded similarly 

low classification performance based on behavioral inputs, across three machine learning models 

(highest AUROC 0.57) (Luquiens et al., 2018). 

 

A later study using a dataset from GTECH (Percy et al., 2016) employed self-exclusion as the 

indicator for problem gambling, training a model to discriminate 176 VSE gamblers against 669 

controls. As inputs, 33 variables reflecting frequency, intensity, variability, trajectory, as well as 

basic demographics were entered. A random forest classifier had an AUROC of 0.79, which is 

considerably higher than performance in Philander (2014) and Luquiens et al (2018). Similar 

analyses using other sources of input data have also found reasonable levels of classificatory 

performance, based on payment-related data (e.g. deposits and withdrawals from the online 

account) (AUROC 0.72) (Haeusler, 2016) and text analysis of email correspondence with the 

operator (AUROC 0.78) (Haefeli, Lischer, & Haeusler, 2015). Although promising, the Percy et 

al. analysis provided no information on the relative importance of their behavioural input 

variables. Information on ‘feature importance’ values would help to allay concerns regarding the 

lack of transparency of machine learning as a ‘black box’ procedure (Coussement & De Bock, 

2013), and will also help to resolve disparities in model performance across different datasets. 

 

In the current study, we apply machine learning to online gambling data from PlayNow.com, the 

provincially-owned online gambling platform in British Columbia, Canada. As input data, we 

selected 20 behavioral variables aggregated by day or session, reflecting frequency, intensity, 

and variability of gambling. In comparison to prior work in which some behavioural variables 
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required pre-processing (e.g. definition of baseline periods and significance testing of 

trajectories, Percy et al., 2016), we deliberately selected coarse inputs that required minimal pre-

processing. Our target group was users with a record of ever having enrolled in the provincial 

VSE program (these records could reflect prior enrolment that had expired, or enrolment within 

the 1 year data window). In our primary model, we trained a random forest classifier on a large, 

unbalanced dataset of 2,157 VSE gamblers against 17,526 non-VSE controls. Our first objective 

was to establish the overall predictive performance (AUROC) of the model based on behavioural 

inputs, and the second objective was to establish which individual behavioural variables were 

most predictive of VSE status, based on feature importance values. We report a series of 

sensitivity analyses to test the impact of key decisions in the modelling process.  

 

METHODS 

Our dataset contains one year (1 October 2014 to 30 September 2015) of online gambling 

activity from BC residents using the eCasino section of PlayNow.com platform. The 

PlayNow.com platform was introduced in BC by the British Columbia Lottery Corporation 

(BCLC) in 2004 and was the first provincially-operated, regulated gambling website in North 

America. In 2015, there were an estimated 265,000 registered users on PlayNow.com in BC 

(Province of BC, 2015). The eCasino section of the platform contains online slot machine and 

table games. In a previous analysis of 1 month of data from PlayNow.com, 97% of bets on the 

overall platform were placed in the eCasino section (Clark & Lesch, 2018).  

 

The dataset was provided in a de-identified format by the BCLC Data Analytics team in October 

2015 following a request by the Centre for Gambling Research to the BCLC Social 
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Responsibility team. Data were given to the Centre under a Non-Disclosure Agreement that does 

not allow sharing or reporting of data from individual users. The Behavioural Research Ethics 

Board at the University of British Columbia approved the protocol for the secondary analyses. 

The user agreement upon registering with PlayNow.com states that gambling data may be shared 

with third parties for research purposes. In preparing the data for transfer, the BCLC Data 

Analytics team assigned each user a unique, randomly generated ID number that was linked to 

their betting behaviour. The time and date of all bets was recorded. The dataset was stored on a 

secure server (Westgrid) hosted in Canada.  

 

The full dataset comprises 30,902 individual customers, placing over half a billion (575,470,087) 

individual bets. In the dataset, 2,458 users had a record of self-exclusion. The BC self-exclusion 

program was established in 1998, and in 2017, there were 9,565 individuals enrolled in program 

(https://www2.gov.bc.ca/gov/content/sports-culture/gambling-fundraising/news-updates/2018-

02-14). On enrolling in the BC self-exclusion program, gamblers select a duration of 6 months, 1 

year, 2 years or 3 years. Shorter term bans were not available at the time of our study (although a 

1-14 day ‘lock-out’ function was introduced subsequently). Gamblers can enroll in VSE either at 

land-based gambling venues, or – as in the case of our dataset - through the PlayNow.com 

website. We note that we did not receive data on the length of the self-exclusion period or the 

number of prior self-exclusions, and our self-exclusion variable could reflect either a prior VSE 

enrolment that had expired, or a user who enrolled in VSE at some point during our data 

window. The data inclusion thresholds (see below) ensured that participants were active users on 

the PlayNow.com platform within the 1 year period under study.  
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Preprocessing and Performance Metrics 

Some users had negligible levels of activity on the platform during the 1 year window. For 

inclusion, we set a minimum data threshold of at least 200 bets. This resulted in 2,157 self-

excluders and 17,526 controls in our primary model. We recognize that this threshold is 

arbitrary, and it is an empirical question how much data per user is required to build meaningful 

models and predict indicators of disordered gambling. As the eCasino comprises online slot 

machine and table games, 200 bets could occur in less than 30 minutes of gambling based on 

typical event frequencies, and thus within a single session. As we discuss further below, we 

tested the impact of thresholding in a sensitivity analysis using an alternative threshold of at least 

10 sessions (see also Percy et al. 2016 who used this alternate threshold in their study).  

 

As inputs, we identified 20 betting variables, reflecting multiple aspects of gambling frequency, 

intensity, and variability (see Table 1 for variable definitions and Supplementary Table 1 for 

descriptive statistics), as guided by previous research on online gambling behavioural markers 

(Braverman et al., 2013; Dragicevic et al., 2015; Gray et al., 2012; Luquiens et al., 2018; Percy, 

França, Dragičević, & d’Avila Garcez, 2016). These were derived by aggregating bet-by-bet data 

across days or sessions, and in addition by calculating the variance of some indicators (e.g. 

Variance in Bets per Session). For the scope of this paper, we do not conduct extensive feature 

engineering; for example, we do not establish baseline windows to quantify trajectories (c.f. 

Percy et al., 2016), or seek to derive/infer psychological constructs such as loss chasing (Adami 

et al., 2013). Whether the incorporation of such variables improves model performance is an 

important question for future research.  

 



Finkenwirth, MacDonald et al (2020 IGS): author accepted manuscript 
 

14 
 

Table 1: Input variables of gambling behaviour included in the primary model. Italicized 

variable names reflect the 6 variables identified by the variable selection algorithm. 

Variable Name Description 

Days Gambled Total number of days in which at least one 

bet was made by the same customer 

Total Sessions Total number of sessions. A session describes 

a sequence  of bets made by the same 

customer, where each bet is placed no more 

than 30 minutes after the previous bet 

Sessions per Day Total Number of Sessions divided by Days 

Gambled 

Total Bets The total number of bets made by the same 

customer 

Bets per Day Total Bets divided by Days Gambled  

Bets per Session Total Bets divided by Total Sessions 

Variance in Bets per Session Variance of Bets per Session 

Distinct Games per Session The number of unique games (within the 

eCasino section) played by the same 

customer divided by Total Sessions 

Variance in Distinct Games per Session Variance of Distinct Games Per Session 

Total Money Bet Total amount of money wagered by the same 

customer in Canadian dollars 

Money Bet per Session Total Money Bet divided by Total  Sessions 
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Variance in Money Bet per Session Variance of Money Bet per Session 

  

  

  

Average Session Length Mean session length (in seconds)  

Variance in Average Session Length Variance of Average Session Length 

Total Money Bet from Promotional Offers Total amount of “Promotional” money 

wagered by the same customer in Canadian 

dollars 

Money Bet from Promotional Offers per 

Session 

Total Money Bet from Promotional Offers 

divided by Total Sessions 

Total Net Loss The total amount of money lost by the same 

customer in Canadian dollars 

Net Loss per Session Total Net Loss divided by Total Sessions 

Total Net Win The total amount of money won by the same 

customer in Canadian dollars 

Net Win per Session Total Net Win divided by Total Sessions 

 

 

In line with previous studies, we report the AUROC as our primary performance metric. 

AUROC is widely used to evaluate the quality of probabilistic predictions, as it is independent of 

any particular classification threshold, and random performance remains an AUROC = 0.5 in 

unbalanced datasets. The advantage of probabilistic predictions compared to discrete class 
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predictions is that the former offers information on the certainty of each prediction. That is, the 

class of interest is predicted with a degree of certainty that ranges between 0 and 1. This 

information is lost when considering classification-based metrics (such as sensitivity and 

specificity), because predicted probabilities need to be projected onto a discrete (in our case 

binary) scale first. However, to aid comparison with previous work, we report sensitivity and 

specificity as secondary performance metrics in Tables 2 and 3 in addition to AUROC.  1 It is 

worth emphasizing that AUROC accounts for both the true positive rate as well as the true 

negative rate (at each threshold), which can lead to overly optimistic evaluation of an algorithm 

in cases where correctly classifying negatives is less important than correctly classifying 

positives (Davis & Goadrich, 2006). For our objectives, it is not clear whether it would be worse 

to mistakenly label a non-VSE gambler as a VSE target, or vice versa. We note that alternatives 

to AUROC also exist for extremely unbalanced datasets, such as the precision-recall curve (Sun, 

Wong, & Kamel, 2009), although we have opted to test the impact of unbalancing more directly, 

by running a sensitivity test with a balanced dataset, as outlined below.  

 

 

Analysis Plan 

Models were run using the python library scikit-learn (scikit-learn.org). Github code and exact 

model values are available at github.com/CGR-UBC/PlayNow_VSEprediction_2020. Our 

primary model was a random forest classifier on the full set of behavioural input variables (see 

Table 1 and Supplementary Table 1), based on 2,157 self-excluders and 17,526 controls. We 

                                                           
1 For the purpose of classification, we use an optimized cutoff value to account for the skew in our base rates in 
the unbalanced case. The optimized cutoff value is found by maximizing the difference between True Positive Rate 
and False Positive Rate, the two axes on the ROC curve on the training dataset.  
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focus on these unbalanced groups in order to make full use of the available data, acknowledging 

that self-exclusion, and disordered gambling more broadly, are relatively rare events, and thus 

real-world data for predictive modelling are likely to be unbalanced. A random forest classifier is 

an ensemble machine learning method based on independently built decision trees. Ensemble 

methods combine several base learners to achieve higher generalizability compared to a single 

model. The random forest algorithm arrives at a final result by averaging the predictions of all 

decision trees in the ensemble. We ran a logistic regression on the same data as a benchmark 

using classical statistics that assume linearity.  

 

Model performance estimation requires testing on unseen data, and with careful attention to 

avoid information leakage (Dwyer et al., 2018). This can be achieved with k-fold cross-

validation (Hastie, Tibshirani, & Friedman, 2009), a procedure in which the dataset is initially 

divided into k folds of approximately the same size, following a specified sub-sampling regime 

(e.g. with or without stratification). Typical values for k are 5 or 10. The training and testing 

process is repeated k times, such that all k folds will have been part of the test set once. A 

predefined performance metric, AUROC in our case, is calculated for each repeat. This results in 

k performance values, which are then averaged to attain a single value to evaluate overall model 

performance. In cases where the training procedure involves optimization steps, such as the 

search for optimal hyperparameters, nested cross-validation should be used (see e.g. Dwyer et 

al., 2018) to obtain unbiased performance estimates. It consists of two cross-validation loops, 

nested into each other: the outer loop is used for testing, while the complete training procedure 

(including hyperparameter optimization) takes place in the inner loop. In our study, both the 
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random forest classifier and logistic regression have hyperparameters that can be optimized. 

Thus, we employed stratified 10-fold nested cross validation for both models.  

 

As mentioned above, we also report classification-based performance metrics, i.e. sensitivity 

(true positive rate) and specificity (true negative rate) in Tables 2 and 3. To calculate these 

measures we obtain predicted probabilities for the entire dataset by using the best performing 

model specifications from the nested cross-validation procedure within a simple 10-fold loop, in 

turn training and predicting on each of the ten folds. For each predicted fold we find the optimal 

classification threshold by maximizing the difference between true positive rate and false 

positive rate. To avoid overfitting, we average the resulting cutoff values over all folds before 

using it to classify the entire dataset.  

 

For the random forest classifier, feature importance rankings were used to establish which input 

variables were most influential in predicting self-exclusion. Feature importance values are 

defined as the total decrease in node impurity for a given tree, averaged over all trees of the 

random forest ensemble (Breiman, Friedman, Stone, & Olshen, 1984). However, some of our 

input variables were moderately to highly inter-correlated, as measured by Pearson’s correlation 

coefficients (see Supplementary Figure 1), for example Total Sessions and Days Gambled. 

Although random forest classification performance is not affected by collinearity of inputs, 

feature importance values would be affected. Thus, for calculating feature importance values, we 

first used a variable selection algorithm to identify a reduced number of inputs that were 

sufficiently uncorrelated with each other. Feature selection based on correlation coefficients 

typically relies on dropping all but one of a set of correlated features. There are several methods 
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to decide on which variables to drop, including correlation with target variable and random 

choice. We opted for developing a custom algorithm that did not rely on utilizing the target 

variable and could be easily integrated into our machine learning pipeline (see our Python code 

in Github repository /_feature_selection_class.ipynb). The program iteratively searches for and 

eliminates subsets of variables around ‘nucleus’ variables, where the correlation coefficient 

between a nucleus variable and each variable in its surrounding subset is higher than some 

constant (0.3 in our case). Retaining the nucleus variables preserves most of the information 

captured (since, by definition, the surrounding variables are all highly correlated with the 

nucleus), while reducing model complexity. The procedure was integrated into the training 

pipeline executed in the inner cross-validation loop, as outlined above.  

 

In summary, our primary model was a random forest classifier on the 20 input variables, using 

the unbalanced dataset of 2,157 self-excluders and 17,526 controls, with the 200-bet data 

inclusion threshold. We report a series of sensitivity analyses to test the impact of key decisions 

in our primary model. First, we re-ran the random forest classifier on the reduced number of 

inputs identified by the variable selection algorithm. Second, we tested the impact of unbalanced 

data by creating a fully balanced dataset; we randomly selected a subset of 2,157 controls. We 

use the ‘choices’ method of the ‘random’ library in Python to select a subset of the control of the 

same size as the target group (for our open code, see Github link). We note that this ‘down-

selection’ inherently loses much data, and that some more sophisticated methods exist for 

handling unbalanced sets, including Synthetic Minority Oversampling Technique, SMOTE 

(Percy et al., 2016). Third, we tested whether our results depended on the 200-bet data inclusion 

threshold. Conceivably, thresholding data based on the number of bets could bias the model 



Finkenwirth, MacDonald et al (2020 IGS): author accepted manuscript 
 

20 
 

towards particular input variables (e.g. those related to bet intensity). Our sensitivity check used 

an alternative data inclusion threshold of at least 10 sessions, based on Percy et al., (2016). A 

session was defined as a period of gambling from the time of user login, until either the user 

logged out, or automatic log-out occurred after 30 minutes of inactivity. This threshold identified 

1,776 self-excluders and 13,470 controls. Fourth, we ran a logistic regression as a classical linear 

benchmark to explore the advantages of random forest as a form of machine learning. 

 

 

RESULTS 

Results for the random forest classifier are shown in Table 2 and for the logistic regression 

benchmark model in Table 3. In the primary model (i.e. the unbalanced dataset, 20 input 

variables, 200-bet threshold), the random forest classifier achieved an AUROC of 0.75 (SD = 

0.01). Under the same conditions, logistic regression performed poorly, with an AUROC of 0.39 

(SD = 0.03). 
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Table 2: Random Forest Classification modeling results 

 

 Unbalanced data Balanced data 

 2,157 vs. 17,526 1,776 vs. 13,470 2,157 vs. 2,157 1,776 vs. 1,776 

 >200 bets >10 sessions >200 bets >10 sessions 

All variables (20)     

AUROC 0.75 (0.01) 0.73 (0.02) 0.76 (0.02) 0.75 (0.02) 

sensitivity 0.69 0.67 0.73 0.74 

specificity 0.65 0.69 0.63 0.65 

Selected variables (6)     

AUROC 0.70 (0.01) 0.65 (0.01) 0.72 (0.03) 0.69 (0.02) 

sensitivity 0.63 0.60 0.63 0.65 

specificity 0.59 0.70 0.63 0.69 

 AUROC = Area under the Receiver Operating Characteristic curve 
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Table 3: Logistic Regression modeling results 

 

 Unbalanced data Balanced data 

 2,157 vs. 17,526 1,776 vs. 13,470 2,157 vs. 2,157 1,776 vs. 1,776 

 >200 bets >10 sessions >200 bets >10 sessions 

All variables (20)     

AUROC 0.39 (0.03) 0.41 (0.03) 0.68 (0.02) 0.65 (0.02) 

sensitivity 0.10 0.03 0.61 0.60 

specificity 0.81 0.96 0.66 0.67 

Selected variables (6)     

AUROC 0.69 (0.02) 0.63 (0.07) 0.70 (0.01) 0.68 (0.02) 

sensitivity 0.46 0.41 0.67 0.68 

specificity 0.71 0.76 0.61 0.56 

 AUROC = Area under the Receiver Operating Characteristic curve 

 

 

The variable selection algorithm identified 6 variables that were sufficiently uncorrelated (i.e. 

had correlation coefficients lower than 0.3). These variables are italicized in Table 1. Figure 1 

shows the feature importance ranking from the random forest classifier on the reduced variable 

set. The Variance in Money Bet per Session had the highest feature importance, accounting for 

32% of the predictive signal. The feature importance rankings for the full set of input variables is 

shown in Supplementary Figure 2, in which Money Bet per Session and Variance in Money Bet 

per Session each accounted for 8% of signal.  
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Figure 1: Feature importance values from the random forest classifier, based on the reduced set 

of 6 input variables identified by the variable selection algorithm 

 

 

 

For the machine learning models in Table 2, the variable selection algorithm had a slight 

negative effect on classification performance (e.g. AUROC 0.75 (SD = 0.01) in the primary 

model to 0.70 (SD = 0.01) based on the 6 inputs). This detrimental effect was greatest for the 

random forest classifier with the alternative 10 session data threshold, in which the AUROC 

decreased from 0.73 (SD = 0.02) in the full variable set to 0.65 (SD = 0.01) in the reduced 

variable set. Conversely, logistic regression performance increased substantially on the reduced 

variable set, with the AUROC rising to 0.69 (SD = 0.02) (see Table 3).  
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The balanced dataset was associated with slightly higher performance. In the primary model, 

performance increased from 0.75 (SD = 0.01) to 0.76 (SD = 0.02) on the balanced data. As this 

falls within the SD range, the difference may represent chance. Lastly, the alternative 10 session 

threshold performed slightly worse than the primary model, with AUROC ranging from 0.65 

(SD = 0.01) to 0.73 (SD = 0.02).  

 

DISCUSSION 

This paper tested the predictive performance of machine learning in classifying self-exclusion 

status in online gamblers. As inputs, we used behavioral variables derived from betting data 

aggregated by day or by session. In our primary model, machine learning using a random forest 

classifier achieved an AUROC of 0.75. Given the coarse nature of our behavioural inputs, we 

consider this to be promising ‘proof of principle’ data for the development of applied algorithms. 

We used feature importance values (based on a smaller set of inputs that were uncorrelated with 

one another) to investigate which variables were most predictive of VSE status. Variance in 

Money Bet per Session had the highest feature importance, accounting for 32% of the predictive 

signal. We performed a number of sensitivity checks of our primary model, to test the impact of 

key modelling decisions including the use of the variable selection algorithm, using a balanced 

dataset, and changing the data inclusion threshold. Across these models, machine learning 

performance varied from 0.65 to 0.76. We infer that model performance is somewhat sensitive to 

these choices, which should be taken into consideration when building predictive models of 

gambling risk. 
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We tested a logistic regression model as a linear benchmark against which the benefits of a 

machine learning approach could be compared. The logistic regression performed particularly 

poorly under equivalent conditions to the primary model, with an AUROC of 0.39. The 

performance of the logistic regression model improved substantially when tested on the smaller 

set of inputs identified by the variable selection algorithm (AUROC = 0.69) and when tested on 

the balanced dataset (AUROC = 0.68). By contrast, the performance of the machine learning 

model decreased slightly on the smaller set of inputs (AUROC = 0.70), so that with the smaller 

set of inputs and balanced dataset, the logistic regression and random forest models performed 

almost identically. It is likely that the logistic regression performed poorly in the main model 

because of high multicollinearity in the full set of inputs, along with other violations of 

assumptions of traditional models, including normality of distributions and linearity of predictor 

relationships (see also Gowin et al. 2019). It is also likely that the performance of the logistic 

regression could be improved with further modelling, and in this sense, our comparison 

somewhat disadvantages the benchmark model. Nevertheless, by our interpretation, it is a 

strength of machine learning that it is largely robust to these statistical factors, and this is clearly 

beneficial for its application to real-world data (i.e. unbalanced groups when predicting rare 

events, based on often collinear inputs).  

 

Two previous studies testing machine learning procedures for gambling risk prediction yielded 

mixed results. On the GTECH dataset, Percy et al. (2016) reported an AUROC of 0.79. Although 

our primary model achieved slightly lower performance than this, Percy et al. (2016) included 

basic demographic predictors (age and gender) as inputs that were not available in our dataset, as 

well as some additional behavioural inputs that represented gambling trajectories relative to a 
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baseline period. Our performance exceeds that reported by Philander (2014) on the bwin dataset, 

for which AUROC varied from 0.50 - 0.55, representing only modest improvements above 

chance performance. Philander’s analysis on the bwin dataset focused on account closers, with 

those citing gambling problems as their reason for closure identified as the target group. The 

superior performance seen here supports the interpretation by Luquiens et al (2018), that 

gamblers’ stated reasons for account closure may offer little discriminatory power. For example, 

gamblers who cite dissatisfaction with the website as their reason for closure may still have 

elevated levels of gambling problems. It also remains possible that idiosyncratic features of 

individual datasets and the operationalizing of specific variables could contribute to these 

performance differences. These issues can only be resolved through increased research access to 

other online gambling datasets. We note that online gambling operators are likely to have access 

to a far wider array of information than was included here, and which would likely strengthen 

model predictions in the future. These include demographic data, analysis of banking 

transactions into the online gambling account (e.g. multiple deposits within a short interval, or 

failed deposits) (Haeusler, 2016), engagement with responsible gambling tools on the platform 

(e.g. adjustments to limit settings), or analysis of correspondence between the gambler and the 

operator (Haefeli et al., 2015).  

 

Machine learning is sometimes criticized for its ‘black box’ nature; how could a gambling 

operator explain a high risk rating to a user? Our analyses address this question of transparency 

by reporting feature importance values, in order to characterize which input variables are most 

important in predicting VSE status. It is striking that the Variance in Money Bet per Session 

accounted for over 32% of the predictive signal (using the smaller set of inputs that were 
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sufficiently uncorrelated). Notably, this is an expenditure-related variable, and gambling harms 

typically arise from financial losses and their repercussions (Blaszczynski & Nower, 2002; 

Langham et al., 2016). What may be more unexpected is that it is the variability in expenditure 

that is predictive in our data. This may reflect loss chasing and/or binging tendencies in which 

the episodic breakdown of control may be a key marker of disordered gambling. Bet variability 

has also been associated with alcohol consumption (Leino et al., 2017), which is challenging to 

detect in the online environment. It is also possible that this fluctuating bet pattern may reflect 

inconsistent access to gambling funds, e.g. following paydays. Adami et al. (2013) proposed a 

‘sawtooth’ pattern of risky gambling, characterized as gradual bet escalation followed by a 

collapse as funds are exhausted. These more specific profiles, based on a detailed, within-session 

behavioural analysis, could be built into subsequent models. Given the ability of random forest 

models to leverage non-linear features of the data, we also note that the relationship between bet 

variability and VSE status may be complex, and emerging techniques allow for more detailed 

characterization of feature importance relationships (Garcia, Dragičević, Percy, & Sarkar, 2019; 

Lundberg & Lee, 2017).    

    

The likely application of machine learning models is to create risk scores for online gamblers. 

These scores may enable gambling operators in identify high-risk gamblers without a record of 

self-exclusion, based on their statistical resemblance to self-excluders as the target group. In an 

analysis of the Swedish PlayScan tool (Wood & Wohl, 2015), 779 online gamblers were 

informed about their risk level based on an undisclosed and proprietary ‘traffic light’ algorithm. 

Users receiving the intermediate risk rating significantly reduced their wagering over a 24-week 

follow-up, although behaviour was not significantly reduced by the feedback in the highest risk 
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group. Nevertheless, the derivation of risk categories involves a number of complex, and 

potentially arbitrary, decisions. Supplementary Figure 3 shows the histogram of predicted 

probabilities of self-exclusion (i.e. ‘risk score’) from our primary model. Inspection of this 

histogram does not reveal any obvious clusters or kinks for separating a high-risk group. Thus, in 

our view, the proposed thresholds for different risk categories would require further empirical 

validation.  

 

Our findings should be interpreted in relation to a number of limitations. First, our analyses were 

based upon 1 year of data from online slot machine and table games, contained within a wider 

provincial platform. Behavioural predictors are likely to vary across game types (Brosowski, 

Meyer, & Hayer, 2012) and our analyses were limited in quantifying breadth of gambling 

involvement only in the eCasino section (Adami et al., 2013; LaPlante et al., 2014). Online 

gamblers may differ from land-based gamblers in their psychological profile (Blaszczynski, 

Russell, Gainsbury, & Hing, 2016; Papineau et al., 2018), and online gamblers who use a 

regulated platform such as PlayNow may differ from those who opt to use unregulated 

(‘offshore’) websites (Gainsbury, Abarbanel, & Blaszczynski, 2019). Certainly, as an analysis of 

behaviour from a single website (and subset of gambling products), these data may offer only a 

snapshot of the wider behaviour of these gamblers. Second, our self-exclusion indicator was both 

retrospective and heterogeneous; these were cases with any record of self-exclusion prior to, or 

during, the one year period, and selected VSE periods could vary from 6 months to 3 years. 

Future analyses may assess prospective prediction of self-exclusion, and rates of re-enrolment in 

VSE after expiry (Luquiens et al., 2018). For future datasets in which VSE status could be 

predicted prospectively, chronological hold-out testing offers an alternative approach to cross-
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validation, in which the model is trained on the older data and tested on the most recent data. 

Third, our input variables did not include demographic variables, and it is likely that younger age 

and male gender may be over-represented (to an unknown extent) in our target group (Dragicevic 

et al., 2015; Hayer & Meyer, 2011). With regard to our feature importance analysis, our 

approach could favor variables that are measured on a larger scale or range of discrete values 

(Strobl, Boulesteix, Zeileis, & Hothorn, 2007), as was the case here for Variance in Money Bet 

per Session. Nevertheless, our findings indicate that variability metrics are important to include 

in the set of input variables for predicting markers of disordered gambling.  

 

A final point concerns the limitations of self-exclusion. Narrowly, our algorithm was built to 

predict self-exclusion status, and it is an empirical question whether such an algorithm has utility 

in predicting disordered gambling more broadly. In support of VSE as a proxy marker for 

disordered gambling, most people who self-exclude are seen to have gambling problems on 

screening instruments, including in the jurisdiction where this research was conducted (74% in 

McCormick et al. 2018). In online poker gamblers, the gambling spend in the month leading up 

to self-exclusion was actually higher than the average monthly spend in group with known 

problem gambling (Luquiens et al., 2018). At the same time, some self-excluders do not display 

evident gambling problems, and a significant proportion of problem gamblers do not self-

exclude, raising the possibility that self-excluders may represent a specific subtype of problem 

gambler (Dragicevic et al., 2015; Motka et al., 2018). Since 2015, the BCLC’s platform 

introduced a 1-14 day ‘lock-out’ feature as a low-barrier alternative to VSE. It is an empirical 

question to what extent lock-out also serves as a (distinct) marker of gambling risk from VSE. 

As different methodological issues constrain most proxy markers (e.g. account closure, or 
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sample bias when hosting screening tools on gambling platforms), we propose that convergent 

data should be sought across multiple markers in order to ‘triangulate’ the construct of 

disordered gambling.  

 

This research has focused on the identification of disordered gambling in the online environment, 

seen through the lens of predicting self-exclusion. We acknowledge that identification is distinct 

from the nature or effectiveness of any intervention that might be built on such identified risk 

status. Possible interventions include the communication of at-risk status (Wood & Wohl, 2015), 

feedback on recent expenditure (Auer & Griffiths, 2016; Wohl, Davis, & Hollingshead, 2017), or 

pop-ups indicating time on device (Auer, Malischnig, & Griffiths, 2014). In our view, our 

observations that machine learning can classify self-exclusion status using relatively coarse 

behavioural inputs with performance up to AUROC 0.76, establishes proof-of-principle data for 

the applied use of behavioural tracking to identify disordered gambling. In addition to the recent 

attention on replication in gambling research as an important exercise in itself (Wohl, Tabri, & 

Zelenski, 2019), our findings extend prior research on predictive algorithms (e.g. Percy et al., 

2016; Philander, 2014) in at least three ways, by reporting i) on a larger sample of self-excluders, 

ii) one of the first datasets from North American jurisdiction, iii) feature importance rankings of 

behavioural inputs, along with testing the impact of a number of key modelling decisions. 

Behavioural inputs reflecting variability appear to be powerful and should be incorporated in 

future research. Further signals for risk prediction may be detectable in a more fine-grained 

analysis of bet-by-bet behaviour, as well as the further tiers of information that are available to 

online gambling operators. Using such information, future refinement of these algorithms may be 

capable of predicting risk of disordered gambling with a high degree of accuracy.  
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Supplementary Material 

Using machine learning to predict self-exclusion status in online gamblers on the 

PlayNow.com platform in British Columbia 

 

Supplementary Table 1: Averages and standard deviations (in parentheses) for the whole sample, 

self-excluders (n=2,157) and control (n=17,526) groups. Italicized variable names reflect the 6 

variables identified by the feature selection algorithm. 

 Overall Self-Excluders Control 

Total 

Sessions 

101.7 (169.97) 90.06 (132.51) 103.13 (173.98) 

Total Bets 29,193.69 (129,199.09) 30,540.66 (56,499.64) 29,027.91 (135,476.78) 

Bets per 

Session 

224.45 (253.55) 326.34 (302.3) 211.91 (243.97) 
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Variance in 

Bets per 

Session 

126,907.9 

(4,039,190.25) 

177,205.18 (459,343.09) 120,717.60 

(4,277,479.32) 

Distinct 

Games per 

Session 

2.96 (2.37) 3.35 (2.53) 2.91 (2.34) 

Variance in 

Distinct 

Games per 

Session 

9.48 (28.64) 12.22 (27.62) 9.14 (28.74) 

Total Money 

Bet 

67,103.31  

(270,165.64) 

85,305.28 (206,068.31) 64,863.11 (276,953.42) 

Money Bet 

per Session 

697.61 (2,315.89) 1,346.37 (3,516.15) 617.77 (2,108.16) 

Variance in 

Money Bet 

per Session 

12,782,508.14 

(201,573,524.16) 

30,631,357.37 

(363,815,474.63) 

10,585,773.7 

(171,187,543.80) 

Days 

Gambled 

57.46 (71.82) 47.93 (55.70) 58.64 (73.47) 

Sessions per 

Day 

1.17 (0.48) 1.28 (0.57) 1.16 (0.46) 
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Bets per Day 345.44 (490.39) 539.16 (496.65) 321.60 (484.30) 

Average 

Session 

Length 

2,202.94 (1,782.58) 3010.74 (2121.08) 2,103.52 (1,710.26) 

Variance in 

Average 

Session 

Length 

7,598,110.37 

(15,263,830.93) 

12354395.57 

(18161581.55) 

7,012,733.95 

(14,763,293.06) 

Total Money 

Bet from 

Promotional 

Offers 

71.61 (267.95) 78.65 (226.35) 70.74 (272.63) 

Promotional 

Bets per 

Session 

0.76 (2.39) 0.84 (2.63) 0.75 (2.36) 

Total Net 

Loss 

2,939.31 (9,019.51) 3926.07 (8939.18) 2,817.86 (9,022.14) 

Net Loss per 

Session 

37.72 (109.74) 72.20 (170.18) 33.48 (98.99) 

Total Net Win 237.92 (6,414.07) 279.73 (4681.33) 232.78 (6,596.03) 
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Note: A high degree of skew is evidenced by the fact that in normally distributed data, most 

values are found within two standard deviations of the mean; for positively valued covariates, 

standard deviations greater than the value of the mean indicate a moderate to high degree of 

(positive) skew, with a minority of very high values.  

 

  

Net Win per 

Session 

3.39 (68.13) 5.41 (52.57) 3.14 (69.80) 
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Supplementary Figure 1: Correlation matrix of all 20 variables. 
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Supplementary Figure 2: Feature importance values from the random forest classifier from the 

primary model with full set of 20 input variables 
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Supplementary Figure 3: Histogram of predicted probabilities, in the primary random forest 

classifier model with all 20 variables . 

 

 

 

 

 


